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Summary 

Reactions of the p~~~eti~ pent~oordinat~ T~r~(PbPMe~)~ adduct 
with strong bases, (RLi (R = Me, Bu) or 1,8_bis~dimethyl~ino)naphth~ene) 
have been found to give methyl~t~~~IV) deri~tives as a result of P-Me 
bond cleavage. 

Tertiary phosph~es are among the most extensively used ligands because of 
their versatility and inertness [ 11. Our current studies of transition metal deriv- 
atives led us to the isolation of a phonetic Tam species, T~rs~P~Me*)~ 
(l), the first monomeric halogen0 Ta 111 adduct structurally characterized [2] . 
Its coordinative and electronic unsaturation leads to unusual behavior in the 
solid as well as in solution. Ta~r~(PhPMe~)~ crystaliises as stereodyn~ic (down 
to -150°C) square-pyramidal molecules with an apical bromine atom occupying 
either of the vacant sites of the basal plane and the two phosphorus ligands in 
cis positions. There is thus a pseudo~c~he~~ en~o~ent of the metal in the 
solid, and no interactions with hydrogen atoms are observed [3]. 

In solution, spontaneous C-H activation reactions provide an alternative 
way of relieving the unsaturation at the ~~~ center and in CHzClz agostic 
C-H interactions involving the phenyl groups are observed. In contrast, ali- 
phatic carbon-hydrogen activation is favoured in CH&N, invol~g oxidative 
ad,dition to Tav species having an q2 -CH~PMePh moiety or the unusual 
HC=TaPMePh metalloeycle (2) (Scheme 1). 
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Attempts to enhance the selective formation of only one metallated phos- 
phane species by reaction of TaBr,(PhPMez)z in the presence of strong bases 
resulted in the unexpected formation of u-methyl derivatives of tantalum. For 
example, the reaction between 1 and one equivalent of butyllithium in diethyl 
ether at room temperature gave a compound analysing* as Ta,Br,(Me)L, (L = 
PhPMe,) but with spectral data, especially in the ‘H NMR**, more in agreement 
with a diamagnetic Taiv compound of formula Ta,Br,(Me)z(PhPMe)(PhPMe,), 
(3). The formation of Ta-Me c-bonds, for which chemical shifts would be in 
the observed range [4], is confirmed by the presence of a broad band at 450 
cm-’ in the infrared. Dimeric structures (such as I), in which tantalum achieves 
its usual hexacoordination and the methyl groups and phosphanes occupy 
equivalent positions, can be assigned to 3. 
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Dynamic equilibrium between geometrical isomers derived from structure I 
may account for the variation in the chemical shift for the tantalum-methyl 
protons as a function of the concentration and of the temperature, as well as 
for the appearance of several phosphorus resonances in the 31P NMR spectrum. 

Formation of u-methyl derivatives of tantalum in high yield is general in re- 
actions between 1 and a variety of strong bases, including methyllithium and 
the proton sponge 1,8-bis(dimethylamino)naphthalene, while lithium bis(tri- 
methylsilyl)amide acts as a nucleophile. The formation of alkyl compounds 
(the only metal species isolated) and their stoichiometry (which depends on 
the base) implies the cleavage of a P-Me bond of a dimethylphenylphosphane 
ligand, even with methyllithium as the base. Various monitoring experiments 
have failed to detect any derivatives corresponding to some P-1 cleavage. 

Although phosphorus--carbon bond cleavage reactions are not unprece- 
dented, they mainly involve P-1 bonds in catalytic cycles: electron-rich 
metal derivatives, or high temperature or hydrogenolysis conditions [ 51. For 
tertiary phosphanes, P-C& cleavage appears to have been limited previously 
to symmetrical PRB (R = Me [63, tBu [73. The cleavage of the P-aryl bond 
of PhPMe, is promoted by osmium derivatives [8a], but the cleavage of a 
P-Me bond rather than a P-aryl bond is to the best of our knowledge 
unprecedented. It is noteworthy that attempts to cleave a P-Me bond of 
PhPMez using more classical routes, such as reactions with alkali metals, or use 
of electrochemical or r-irradiation methods, were unsuccessful [8b]. 

The fact that the P-Me cleavages mediated by the tantalum center occurs 
under very mild conditions (even -20%) may be a consequence of the high 

*Analytical date: Found: C, 24.96;H. 3.36; P. 7.36. C&I,Br,P,Te, &cd.: C, 25.19; H. 3.04; P, 7.80%. 
**NMR date for 3 in CD&N: ‘I-I: 6 4.02 (6H, CH,). 2.12 (3H. d, ‘J(P-H) 15 Hz, PhPMe); 2.11 (12H. d, 

‘J(P-H) 15 Hz, PhPMe,). =P I’H): +64 (PhPMe). 22.5, 6.7. -7.9 (PhPMe,) ~pm. 



thermodynamic stability of the Ta-Me bond. The mean bond dissociation 
energy D(Ta-Me) of 261+6 kJ mol-l estimated from the heat of dissocation of 
TaMe5 [ 10 J , is quite high compared to the values found for most other meth- 
yl-metal bonds [ 111, and is comparable to the D(P-CH3) bond energy (264 
kJ mol-’ , for PMe,) [ 121. The formation of a ~-phosphido~talum species 
and sometimes of LiPPhMe, which according to Issleib should be p~ticul~ly 
stable [ 131, may act as an additional driving force in the P-Me bond cleavage. 

The scope of P-C cleavage reactions for the preparation of other low-valent 
alkyl complexes of tantalum and niobium is under investigation [ 141. 
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